複素数と有理数
Julia には、複素数と有理数の両方を組込型として持っており、それらにすべての標準 算術演算と初等関数 をサポートしています。変換と昇格 は、プリミティブまたは複合型の任意の組み合わせに対する操作が期待どおりに動作するように定義されます。
Complex Numbers
The global constant im
is bound to the complex number i, representing the principal square root of -1. (Using mathematicians' i
or engineers' j
for this global constant were rejected since they are such popular index variable names.) Since Julia allows numeric literals to be juxtaposed with identifiers as coefficients, this binding suffices to provide convenient syntax for complex numbers, similar to the traditional mathematical notation:
julia> 1+2im
1 + 2im
You can perform all the standard arithmetic operations with complex numbers:
julia> (1 + 2im)*(2 - 3im)
8 + 1im
julia> (1 + 2im)/(1 - 2im)
-0.6 + 0.8im
julia> (1 + 2im) + (1 - 2im)
2 + 0im
julia> (-3 + 2im) - (5 - 1im)
-8 + 3im
julia> (-1 + 2im)^2
-3 - 4im
julia> (-1 + 2im)^2.5
2.729624464784009 - 6.9606644595719im
julia> (-1 + 2im)^(1 + 1im)
-0.27910381075826657 + 0.08708053414102428im
julia> 3(2 - 5im)
6 - 15im
julia> 3(2 - 5im)^2
-63 - 60im
julia> 3(2 - 5im)^-1.0
0.20689655172413796 + 0.5172413793103449im
The promotion mechanism ensures that combinations of operands of different types just work:
julia> 2(1 - 1im)
2 - 2im
julia> (2 + 3im) - 1
1 + 3im
julia> (1 + 2im) + 0.5
1.5 + 2.0im
julia> (2 + 3im) - 0.5im
2.0 + 2.5im
julia> 0.75(1 + 2im)
0.75 + 1.5im
julia> (2 + 3im) / 2
1.0 + 1.5im
julia> (1 - 3im) / (2 + 2im)
-0.5 - 1.0im
julia> 2im^2
-2 + 0im
julia> 1 + 3/4im
1.0 - 0.75im
Note that 3/4im == 3/(4*im) == -(3/4*im)
, since a literal coefficient binds more tightly than division.
Standard functions to manipulate complex values are provided:
julia> z = 1 + 2im
1 + 2im
julia> real(1 + 2im) # real part of z
1
julia> imag(1 + 2im) # imaginary part of z
2
julia> conj(1 + 2im) # complex conjugate of z
1 - 2im
julia> abs(1 + 2im) # absolute value of z
2.23606797749979
julia> abs2(1 + 2im) # squared absolute value
5
julia> angle(1 + 2im) # phase angle in radians
1.1071487177940904
通常どおり、複素数の絶対値(abs
) はゼロからの距離です。 abs2
は絶対値の二乗を与え、平方根計算が行われないので複素数に特に使用されます。angle
は、ラジアンの位相角度を返します (argument または arg 関数とも呼ばれます)。他の一通りの初等関数も複素数に対して定義されています:
julia> sqrt(1im)
0.7071067811865476 + 0.7071067811865475im
julia> sqrt(1 + 2im)
1.272019649514069 + 0.7861513777574233im
julia> cos(1 + 2im)
2.0327230070196656 - 3.0518977991518im
julia> exp(1 + 2im)
-1.1312043837568135 + 2.4717266720048188im
julia> sinh(1 + 2im)
-0.4890562590412937 + 1.4031192506220405im
Note that mathematical functions typically return real values when applied to real numbers and complex values when applied to complex numbers. For example, sqrt
behaves differently when applied to -1
versus `-1
- 0im
even though
-1 == -1 + 0im`:
julia> sqrt(-1)
ERROR: DomainError with -1.0:
sqrt will only return a complex result if called with a complex argument. Try sqrt(Complex(x)).
Stacktrace:
[...]
julia> sqrt(-1 + 0im)
0.0 + 1.0im
The literal numeric coefficient notation does not work when constructing a complex number from variables. Instead, the multiplication must be explicitly written out:
julia> a = 1; b = 2; a + b*im
1 + 2im
However, this is not recommended. Instead, use the more efficient complex
function to construct a complex value directly from its real and imaginary parts:
julia> a = 1; b = 2; complex(a, b)
1 + 2im
This construction avoids the multiplication and addition operations.
Inf
および NaN
は、特殊な浮動小数点値セクションで説明されているように、複素数の実部と虚部に伝播します:
julia> 1 + Inf*im
1.0 + Inf*im
julia> 1 + NaN*im
1.0 + NaN*im
Rational Numbers
Julia has a rational number type to represent exact ratios of integers. Rationals are constructed using the //
operator:
julia> 2//3
2//3
If the numerator and denominator of a rational have common factors, they are reduced to lowest terms such that the denominator is non-negative:
julia> 6//9
2//3
julia> -4//8
-1//2
julia> 5//-15
-1//3
julia> -4//-12
1//3
This normalized form for a ratio of integers is unique, so equality of rational values can be tested by checking for equality of the numerator and denominator. The standardized numerator and denominator of a rational value can be extracted using the numerator
and denominator
functions:
julia> numerator(2//3)
2
julia> denominator(2//3)
3
Direct comparison of the numerator and denominator is generally not necessary, since the standard arithmetic and comparison operations are defined for rational values:
julia> 2//3 == 6//9
true
julia> 2//3 == 9//27
false
julia> 3//7 < 1//2
true
julia> 3//4 > 2//3
true
julia> 2//4 + 1//6
2//3
julia> 5//12 - 1//4
1//6
julia> 5//8 * 3//12
5//32
julia> 6//5 / 10//7
21//25
Rationals can easily be converted to floating-point numbers:
julia> float(3//4)
0.75
Conversion from rational to floating-point respects the following identity for any integral values of a
and b
, with the exception of the case a == 0
and b == 0
:
julia> a = 1; b = 2;
julia> isequal(float(a//b), a/b)
true
Constructing infinite rational values is acceptable:
julia> 5//0
1//0
julia> -3//0
-1//0
julia> typeof(ans)
Rational{Int64}
Trying to construct a NaN
rational value, however, is invalid:
julia> 0//0
ERROR: ArgumentError: invalid rational: zero(Int64)//zero(Int64)
Stacktrace:
[...]
As usual, the promotion system makes interactions with other numeric types effortless:
julia> 3//5 + 1
8//5
julia> 3//5 - 0.5
0.09999999999999998
julia> 2//7 * (1 + 2im)
2//7 + 4//7*im
julia> 2//7 * (1.5 + 2im)
0.42857142857142855 + 0.5714285714285714im
julia> 3//2 / (1 + 2im)
3//10 - 3//5*im
julia> 1//2 + 2im
1//2 + 2//1*im
julia> 1 + 2//3im
1//1 - 2//3*im
julia> 0.5 == 1//2
true
julia> 0.33 == 1//3
false
julia> 0.33 < 1//3
true
julia> 1//3 - 0.33
0.0033333333333332993